ENGLISH    
 
  中国科学院    
 
 
     
 
首 页  
组织机构
科研成果
研究队伍
人才培养
信息公开
人才招聘
   科研新闻
   新闻动态
      图片新闻
      头条新闻
      综合新闻
      科研新闻
      人物风采
      季度通讯
现在位置:首页 > 新闻动态 > 科研新闻
(邱彦奇)行列式点过程理论的系列研究进展
2018-06-13 | 编辑:华罗庚数学中心

  行列式点过程是用来描述完备度量空间中一类特殊随机子集的理论,该理论目前在随机矩阵,无穷维群表示论,随机图论中均有应用。在行列式点过程理论的研究中,完成以下成果: 

  1)  解决由BorodinICM plenary speaker)和OlshanskiICM invited speaker)在对无穷维华罗庚测度的遍历分解工作中的遗留问题,从而最终完全刻画出了华罗庚测度的遍历分解。该结果已发表于Adv. Math. 2017. 

  2)  研究了与复平面上加权Bergman解析函数空间密切联系的行列式点过程的Palm测度等价性问题和条件测度。这些结果已发表于Commun.Math. Phys. 2017, J. Funct. Anal.2017  

  3)  研究高维复区域上与加权Bergman解析函数空间密切联系的行列式点过程的Palm测度的等价性问题。该结果已被Probab. Theory Related Fields正式接受。 

  4)  研究了直线上一类具有J-Hermitian型的相关核的行列式点过程。首次提出并研究了这一框架下的平衡刚性和Palm测度的平衡等价性问题。该结果已在线发表于Math.Ann.2017 

  5)  解决了行列式点过程里的Lyons-Peres猜想,这一猜想由Lyons2014ICM邀请报告中提出。 

  与本成果相关的论文: 

  1. Alexander I. Bufetov and Yanqi Qiu, Ergodic measures on spaces of infinite matrices over non-Archimedean locally compact fields, Compositio Math. 153(2017), 2482-2533. Doi: 10.1112/S0010437X17007412. 

  2. Alexander I. Bufetov and Yanqi Qiu, J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence, Math. Ann., https://doi.org/10.1007/s00208-017-1627-y. 

附件下载:
 
 
【打印本页】【关闭本页】
 
研究院电子政务平台    中科院邮件系统    图书馆    会议服务平台
 
新闻动态 | 学术期刊 | 创新文化 | 党建文化 | 校友会 | 网站地图 | 联系我们
版权所有 © 中国科学院数学与系统科学研究院  京ICP备05002806号  京公网安备110402500020号
地址:北京市海淀区中关村东路55号  邮政编码:100190
电话:86-10-82541777  Fax:86-10-82541972  Email:contact@amss.ac.cn