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Abstract

This paper is the first one of two serial articles, whose goal is to prove convergence
of HX Preconditioner (proposed by Hiptmair and Xu [14]) for Maxwell’s equations with
jump coefficients. In this paper we establish various extensions of the regular Helmholtz
decomposition for edge finite element functions defined in three dimensional domains.
The functions defined by the regular Helmholtz decompositions can preserve the zero
tangential complement on faces and edges of polyhedral domains and some non-Lipchitz
domains, and possess stability estimates with only a logarithm factor. These regular
Helmholtz decompositions will be used to prove convergence of the HX preconditioner
for Maxwell’s equations with jump coefficients in another paper [15].
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1 Introduction

The (orthogonal or regular) Helmholtz decomposition says that any vector-valued function
in H(curl) space can be decomposed into the sum of a H1 vector-valued function and the
gradient of a H1 scalar-valued function (refer to [10] and [9]), and the decomposition is stable
with respect to the standard norms. The regular Helmholtz decomposition is nicer than the

1This author was supported by the Natural Science Foundation of China G11571352.
(hqy@lsec.cc.ac.cn).
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orthogonal Helmholtz decomposition in the sense that the regular Helmholtz decomposition
is valid on the general Lipchitz domains, but the orthogonal Helmholtz decomposition hold
only on smooth domains or convex domains. Own to the Helmholtz decomposition, the
problem for a H(curl) functions can be transformed into the problem on two H1 functions.

The Nedelec edge finite element method (see [24]) is a popular discretization method of
Maxwell’s equations. The Helmholtz decompositions for the edge finite element functions,
which is called discrete Helmholtz decompositions, play a key role in numerical analysis,
especially in the convergence analysis of preconditioners, for Maxwell’s equations (see, for
example, [12, 14, 17, 18, 19, 25, 28, 29]). However, in applications nonhomogeneous medium
is often encountered, and so some weighted norms have to be introduced. A natural question
is: whether the discrete Helmholtz decomposition is still stable with respect to the weighted
norms? It seems not easy to give a positive answer to this question. The first work on
Helmholtz decomposition in three dimensional nonhomogeneous medium was done in [17],
where a discrete weighted orthogonal Helmholtz decomposition was constructed and proved
to be almost stable with respect to a weight function.

This paper is the first one of two serial articles. The purposes of the serial articles are
to build a discrete weighted regular Helmholtz decomposition in three dimensions and to
prove the convergence of HX preconditioner [14] for Maxwell’s equations with jump coeffi-
cients based on the new Helmholtz decomposition. For these purposes, in this paper we first
develop some technical tools to derive various extensions of the discrete regular Helmholtz
decomposition in three dimensions. The standard regular (and orthogonal) Helmholtz de-
composition possesses a very important property: when the considered vector-valued func-
tion has zero trace on the boundary of the underlying domain, the functions defined by
the Helmholtz decomposition also have the zero trace on this boundary. We will construct
discrete regular Helmholtz decompositions on polyhedral domains such that the property
mentioned above can be kept when the boundary is replaced by a union of some local
faces and edges of the polyhedral domain. We can require that the functions defined by
the decomposition vanish at any vertex of the polyhedron, provided that the considered
vector-valued function satisfies a constraint for each vertex. In particular, we also estab-
lish the corresponding Helmholtz decompositions for some non-Lipchitz domains, which are
unions of two polyhedral domains whose intersection is just one edge or one vertex. We
will show that the regular Helmholtz decompositions possess stability estimates with only
a logarithm factor. These results, which are of interest themselves, will be used in [15] to
develop a discrete weighted regular Helmholtz decomposition, by which the convergence of
HX preconditioner for the case with jump coefficients will be further proved.

The outline of the paper is as follows. In Section 2, we define some edge finite ele-
ment subspaces. In section 3, we prove regular Helmholtz decompositions preserving zero
tangential trace on faces. In Section 4, we present several discrete regular Helmholtz de-
compositions preserving local zero tangential complements on edges and faces. In Section
5, we derive discrete regular Helmholtz decompositions on some non-Lipchitz domains.

2 Preliminaries

This section introduce some fundamental finite element spaces.
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2.1 Sobolev spaces and norms

For an open and connected bounded domain G in R3, let H1(G) be the standard Sobolev
space. Define the curl-space as follows

H(curl;G) = {v ∈ L2(G)3; curl v ∈ L2(G)3}.

Set
‖v‖1,G = (|v|21,G + ‖v‖20,G)

1
2 v ∈ (H1(G))3

and
‖v‖curl,G = (‖curl v‖20,G + ‖v‖20,G)

1
2 v ∈ H(curl; G).

For a (may be non-convex) polyhedron G, let Γ be a (closed) face or the union of several
faces of G. Define

HΓ(curl; G) = {v ∈ H(curl; G) : v × n = 0 on Γ}

and
H1

Γ(G) = {v ∈ H1(G) : v = 0 on Γ}.

2.2 Edge and nodal element spaces

For a polyhedron G, let G be divided into smaller tetrahedral elements of size h, and let
Th denote the resulting triangulation of the domain G. As usual, we assume that the
triangulation Th is quasi-uniform. We use Eh and Nh to denote the set of edges of Th and
the set of nodes in Th respectively. Then the Nedelec edge element space, of the lowest
order, is a subspace of piecewise linear polynomials defined on Th:

Vh(G) =
{

v ∈ H(curl; G); v|K ∈ R(K), ∀K ∈ Th
}
,

where R(K) is a subset of all linear polynomials on the element K of the form:

R(K) =
{

a + b× x; a,b ∈ R3, x ∈ K
}
.

It is known that, for any v ∈ Vh(G), its tangential components are continuous on all
edges in Eh, and v is uniquely determined by its moments on each edge e of Th:

Mh(v) =
{
λe(v) =

∫
e
v · teds; e ∈ Eh

}
where te denotes the unit vector on edge e, and this notation will be used to denote any
edge or union of edges, either from an element K ∈ Th or from G itself. For example, for a
face f of G, the notation t∂f denotes the unit vector along ∂f. For a vector-valued function
v with appropriate smoothness, we introduce its edge element interpolation rhv such that
rhv ∈ Vh(G), and rhv and v have the same moments as in Mh(v). The interpolation
operator rh will be used in the construction of a stable decomposition for any function
vh ∈ Vh(G).

As we will see, the edge element analysis involves also frequently the nodal element
space. For this purpose we introduce Zh(G) to be the standard continuous piecewise linear
finite element space in H1(G) associated with the triangulation Th.

Define
Vh(∂G) = {(v × n)|∂G; v ∈ Vh(G)},

3



Z0
h(G) = {q ∈ Zh(G); q = 0 on ∂G}

and
V 0
h (G) = {v ∈ Vh(G); v × n = 0 on ∂G}.

Throughout this subsection, we shall consider a (may be non-convex) polyhedron G. We
will often use f, e and v to denote a general face, edge and vertex of G respectively, but
use e to denote a general edge of Th lying on ∂G.

From now on, we shall frequently use the notations <∼ and =∼ . For any two non-negative

quantities x and y, x <∼ y means that x ≤ Cy for some constant C independent of mesh

size h, subdomain size d and the possible large jumps of some related coefficient functions
across the interface between any two subdomains. x =∼ y means x <∼ y and y <∼ x.

3 Regular Helmholtz decompositions preserving zero tangen-
tial trace on faces

In this section we develop regular Helmholtz decompositions for vector-valued functions that
have zero tangential trace on some faces of a polyhedron. We use the notations introduced
in the previous section.

Lemma 3.1 For any v ∈ HΓ(curl; G), there exists a vector-valued function Φ ∈ (H1
Γ(G))3

and a scalar function p ∈ H1
Γ(G) such that

v = Φ +∇p. (3.1)

Moreover, we have

‖Φ‖1,G <∼ ‖curl v‖0,G and ‖p‖1,G <∼ ‖v‖curl,G. (3.2)

In particular, if v = vh ∈ Vh(G), then

vh = rhΦ +∇ph (3.3)

with ph ∈ Zh(G) ∩H1
Γ(G), which satisfies

‖ph‖1,G <∼ ‖v‖curl,G. (3.4)

Moreover, there exist Φh ∈ (Zh(G) ∩H1
Γ(G))3 and Rh ∈ Vh(G) ∩HΓ(curl; G) such that

vh = rhΦh +∇ph + Rh, (3.5)

and
‖Φh‖1,G <∼ ‖curl v‖0,G and h−1‖Rh‖0,G <∼ ‖curl v‖0,G. (3.6)

When either G is convex or Γ contains the concave part of ∂G, the functions Φ, p, Φh and
ph defined above satisfy the estimates

‖Φ‖1,G <∼ ‖curl v‖0,G and ‖Φ‖0,G + ‖p‖1,G <∼ ‖v‖0,G (3.7)

and
‖Φh‖1,G <∼ ‖curl v‖0,G and ‖Φh‖0,G + ‖ph‖1,G <∼ ‖v‖0,G. (3.8)
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Proof. The proof follows the arguments in [9, 25]. Let B be a polyhedron domain containing
G as its subdomain such that ∂G ∩ ∂B = ∂G\Γ and the size of the complement D = B\G
is a positive number independent of h. It is easy to see that ∂G ∩ ∂D = Γ. We extend v
onto the global B by zero, i.e., the extension ṽ satisfying ṽ = v on G and ṽ = 0 on D̄.
Since v × n = 0 on Γ, we have ṽ ∈ H(curl; B). By the regular Helmholtz decomposition
(Lemma 2.4 in [13]), we get

ṽ = w +∇ϕ on B, (3.9)

with w ∈ (H1(B))3 and ϕ ∈ H1(B)/R. Moreover, w and ϕ satisfy

‖w‖1,B <∼ ‖curl ṽ‖0,B = ‖curl v‖0,G and ‖ϕ‖1,B <∼ ‖ṽ‖curl,B = ‖v‖curl,G. (3.10)

When either G is convex or Γ contains the concave part of ∂G, we can require that B is
also convex. Then, by the orthogonal Helmholtz decomposition in [10], we have

‖w‖1,B <∼ ‖curl v‖0,G and ‖w‖0,B + ‖ϕ‖1,B <∼ ‖v‖0,G. (3.11)

Noting that ṽ = 0 on D̄, we have ∇ϕ = −w on D, and so ϕ ∈ H2(D). Let ϕ̃ ∈ H2(B) be
the stable extension of ϕ from D onto the global B. It follows by (3.9) that

ṽ = (w +∇ϕ̃) +∇(ϕ− ϕ̃) on B. (3.12)

Define Φ = w + ∇ϕ̃ and p = ϕ − ϕ̃. Then we have Φ ∈ (H1(B)3 and p ∈ H1(B),
and they satisfy (3.1). Since Φ = 0 on D̄, we obtain Φ = 0 on Γ, which implies that
(∇p)× n = (v − Φ)× n = 0 on Γ. Therefore Φ ∈ (H1

Γ(G))3 and p ∈ H1
Γ(G).

By the definition of Φ and the first inequality in (3.10), we get

‖Φ‖1,G ≤ ‖w‖1,G + ‖ϕ̃‖2,G
<∼ ‖curl v‖0,G + ‖ϕ‖2,D
<∼ ‖curl v‖0,G + ‖w‖1,D
<∼ ‖curl v‖0,G + ‖w‖1,B
<∼ ‖curl v‖0,G.

We can further obtain the second inequality of (3.2) by (3.1). The decompositions (3.3) can
be obtained by the property of the interpolation operator rh.

Let Qh : (H1
Γ(G))3 → (Zh(G)∩H1

Γ(G))3 denote the L2 projector. Define Φh = QhΦ and

Rh = rh(I−Qh)Φ = (I−Qh)Φ + (rh − I)(I−Qh)Φ.

Notice that both Qh and rh possess the optimal L2 approximation on the space (H1(G))3,
the estimate (3.6) can be derived immediately. The estimates (3.7) and (3.8) can be verified
similarly by using (3.11). ]

Remark 3.1 The key tool in the above proof is the well known extension theorem for the
considered domain. The extension theorem was extended to more general domain in [20].
This kind of domain, which is called (ε, δ) domain or Jone domain, can be highly non-
rectifiable and no regularity condition on its boundary, and includes the classical snowflake
domain of conformal mapping theory and small perturbation domain of a polyhedron, where
some face of the perturbation domain is a union of faces of some elements and is not a plane
face. Thus Theorem 3.1 is also valid for Jone domain, in which Γ may be heavily irregular.
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As we will see in [15], the second inequality in (3.8) will play key role in the analysis
for the case that the zero order term in the considered Maxwell equations is dominated.
Unfortunately, the results do not hold yet when G is a non-convex polyhedron (unless Γ
contains the concave part of ∂G), cf. Remark 4 in [14]. In the following we establish slightly
weaker results for such situation. To this end, we first give a simple auxiliary result.
Proposition 3.1. Let G be a polyhedron, and assume that wh ∈ (Zh(G))3. Then we have
curl (rhwh) = curl wh and ‖rhwh‖0,G <∼ ‖wh‖0,G.

Proof. Let Wh(G) denote the Raviart-Thomas finite element space of the lowest order,
and let Πh be the interpolation operator into Wh(G). Since wh ∈ (Zh(G))3, we have
curl wh ∈Wh(G). Then

curl (rhwh) = Πhcurl wh = curl wh.

The desired inequality can be derived by the approximation property of rh and the inverse
estimate of finite element functions. ]

The following results give a slightly weak L2 stability of the regular Helmholtz decom-
position for the case of non-convex polyhedron.

Theorem 3.1 Let G be a non-convex polyhedron, which is a union of several convex poly-
hedra, and let Γ be a union of several faces of G. Assume that vh ∈ Vh(G) satisfies
vh × n = 0 on Γ. Then there exist ph ∈ Zh(G) ∩ H1

Γ(G), wh ∈ (Zh(G) ∩ H1
Γ(G))3 and

Rh ∈ Vh(G) ∩HΓ(curl; G) such that

vh = ∇ph + rhwh + Rh, (3.13)

with the following estimates

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖wh‖0,G + ‖ph‖1,G <∼ log(1/h)‖vh‖0,G (3.14)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (3.15)

Proof. Without loss of generality, we assume that G is the union of three cubes: G =
D1 ∪D2 ∪D3 with D1 = [0, 1

2 ]3, D2 = [1
2 , 1]× [0, 1

2 ]2 and D3 = [0, 1
2 ]× [1

2 , 1]× [0, 1
2 ].

Figure 1: A non-convex polyhedron composed of three cubes
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We divide the proof into two steps.
Step 1. Build the desired decomposition.
We first build a decomposition of vh on D1 by Lemma 3.1. Since D1 is convex, the

function vh,1 = vh|D1 admits the decomposition

vh,1 = ∇ph,1 + rhwh,1 + Rh,1 on D1, (3.16)

with ph,1 ∈ Zh(D1), wh,1 ∈ (Zh(D1))3 and Rh,1 ∈ Vh(D1), which satisfy ph,1 = 0, wh,1 = 0
and Rh,1 × n = 0 on ∂D1 ∩ Γ (when ∂D1 ∩ Γ = ∅, we can require that ph,1 has the zero
average value on D1). Moreover, we have

‖wh,1‖1,D1
<∼ ‖curl vh,1‖0,D1 , ‖wh,1‖0,D1 + ‖ph,1‖1,D1

<∼ ‖vh,1‖0,D1 (3.17)

and
h−1‖Rh,1‖0,D1

<∼ ‖curl vh,1‖0,D1 . (3.18)

Secondly, we extend wh,1 and ph,1 into D2 and D3 in a special manner such that some
stability can be satisfied.

For k = 2, 3, set f1k = ∂D1 ∩ ∂Dk, and let ϑf1k
be the finite element function defined

in [6] and [30]. This function satisfies ϑf1k
(x) = 1 for each node x ∈ f̄1k\∂f1k, ϑf1k

(x) = 0
for x ∈ ∂D1\f1k and 0 ≤ ϑf1k

≤ 1 on D1. Let πh denote the standard interpolation

operator into Zh(D1), and define wf1k
h,1 = πh(ϑf1k

wh,1) (k = 2, 3). Then wf1k
h,1 ∈ (Zh(D1))3

and wf1k
h,1 = 0 on ∂D1\f1k (k = 2, 3). By the extension theorem and the Scott-Zhang

interpolation [27] , we can show (refer to the proof of Lemma 4.5 in [21]) there exists an
extension w̃f1k

h,1 ∈ (Zh(G))3 such that w̃f1k
h,1 = wf1k

h,1 on D1, w̃f1k
h,1 vanishes on ∂Dk\f1k

(k = 2, 3) and satisfies

‖w̃f1k
h,1 ‖1,Dk

<∼ ‖w
f1k
h,1 ‖1,D1 and ‖w̃f1k

h,1 ‖0,Dk
<∼ ‖w

f1k
h,1 ‖0,D1 (k = 2, 3). (3.19)

Set f∂ = ∂f12 ∪ ∂f13, and let w̃∂
h,1 ∈ (Zh(G))3 denote the natural zero extension of wh,1|f∂ .

Define w̃h,1 as follows:

w̃h,1 = wh,1 on D1; w̃h,1 = w̃f1k
h,1 + w̃∂

h,1|Dk
on Dk (k = 2, 3).

It is easy to see that w̃h,1 ∈ (Zh(G))3.
We define the extension p̃h,1 ∈ Zh(G) as follows: p̃h,1 = ph,1 on D̄1; p̃h,1 vanishes at all

the nodes in ∂Dk\f̄1k (k = 2, 3); p̃h,1 is discrete harmonic in Dk (k = 2, 3). Let R̃h,1 ∈ Vh(G)
be the natural zero extension of Rh,1. For k = 2, 3, we define

v∗h,k = vh|Dk
− (∇p̃h,1 + rhw̃h,1 + R̃h,1)|Dk

on Dk. (3.20)

It is easy to see that v∗h,k × n = 0 on f̄1k ∪ (∂Dk ∩ Γ) (k = 2, 3).
Now we build the desired decomposition based on a Helmholtz decomposition of the

function v∗h,k (k = 2, 3) defined above.
Notice that Dk is a convex polyhedron. It follows by Lemma 3.1 that the function v∗h,k

admits the decomposition

v∗h,k = ∇p∗h,k + rhw
∗
h,k + R∗h,k on Dk (k = 2, 3), (3.21)

with p∗h,k ∈ Zh(Dk), w∗h,k ∈ (Zh(Dk))
3 and R∗h,k ∈ Vh(Dk) (k = 2, 3), which satisfy p∗h,k = 0,

w∗h,k = 0 and R∗h,k × n = 0 on f̄1k ∪ (∂Dk ∩ Γ) (k = 2, 3). Moreover, for k = 2, 3 we have

‖w∗h,k‖1,Dk
<∼ ‖curl v∗h,k‖0,Dk

, ‖w∗h,k‖0,Dk
+ ‖p∗h,k‖1,Dk

<∼ ‖v
∗
h,k‖0,Dk

(3.22)
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and
h−1‖R∗h,k‖0,Dk

<∼ ‖curl v∗h,k‖0,Dk
. (3.23)

Since p∗h,k, w∗h,k and R∗h,k have the zero degrees of freedom on f̄1k, we can naturally
extend them into G by zero. We denote the resulting zero extentions by p̃∗h,k, w̃∗h,k and

R̃∗h,k. Define

ph = p̃h,1 +

3∑
k=2

p̃∗h,k, wh = w̃h,1 +

3∑
k=2

w̃∗h,k and Rh = R̃h,1 +

3∑
k=2

R̃∗h,k.

It is easy to see that ph, wh and Rh have the zero degrees of freedom on Γ. Using the
local decompositions (3.16) and (3.21), together with the relation (3.20), we get the global
decomposition of vh

vh = ∇ph + rhwh + Rh. (3.24)

Step 2. Derive the stability estimates.
From the definition of wh, we have

‖wh‖1,G <∼ ‖w̃h,1‖1,G +
3∑

k=2

‖w̃∗h,k‖1,Dk
(3.25)

For k = 2, 3, by (3.22) and (3.20) we can deduce that

‖w̃∗h,k‖1,Dk
<∼ ‖curl v∗h,k‖0,Dk

<∼ ‖curl vh‖0,Dk
+ ‖curl(rhw̃h,1)‖0,Dk

+ ‖curl R̃h,1‖0,Dk
.

Applying Proposition 3.1 and the inverse estimate to the last two norms in the above
inequality, we get

‖w̃∗h,k‖1,Dk
<∼ ‖curl vh‖0,Dk

+ ‖curl w̃h,1‖0,Dk
+ h−1‖R̃h,1‖0,Dk

<∼ ‖curl vh‖0,Dk
+ ‖w̃h,1‖1,Dk

+ h−1‖Rh,1‖0,D1 . (3.26)

Here we have used the relation ‖R̃h,1‖0,Dk
<∼ ‖Rh,1‖0,D1 , which can be verified directly by

the definition of R̃h,1. Substituting (3.26) into (3.25), and using (3.17)-(3.18), yields

‖wh‖1,G <∼ ‖curl vh‖0,G +
3∑

k=2

‖w̃h,1‖1,Dk
. (3.27)

Similarly, we can show

‖wh‖0,G <∼ ‖vh‖0,G +

3∑
k=2

‖w̃h,1‖0,Dk
. (3.28)

It suffices to estimate ‖w̃h,1‖1,Dk
and ‖w̃h,1‖0,Dk

(k = 2, 3). By using Lemma 3.36 in [6]
and Lemma 4.24 in [30], we get for k = 2, 3

‖wf1k
h,1 ‖1,D1

<∼ log(1/h)‖wh,1‖1,D1 .

Combining this inequality with (3.19), leads to

‖w̃f1k
h,1 ‖1,Dk

<∼ log(1/h)‖wh,1‖1,D1 . (3.29)
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On the other hand, from the “edge” lemma (cf.[30] and [31]), we have

‖w̃∂
h,1‖1,Dk

<∼ ‖wh,1‖0,f1k
<∼ log

1
2 (1/h)‖wh,1‖1,D1 (k = 2, 3).

By the definition of w̃h,1, together with (3.29) and the above estimate, we deduce that

‖w̃h,1‖1,Dk
<∼ log(1/h)‖wh,1‖1,D1 (k = 2, 3).

Plugging this into (3.27), gives the first estimate in (3.14).
It is easy to see, from the definitions of wf1k

h,1 and w̃∂
h,1, that

‖wf1k
h,1 ‖0,D1

<∼ ‖wh,1‖0,D1 and ‖w̃∂
h,1‖0,Dk

<∼ ‖wh,1‖0,D1 (k = 2, 3). (3.30)

This, together with the second inequality in (3.19), leads to

‖w̃h,1‖0,Dk
<∼ ‖wh,1‖0,D1 (k = 2, 3). (3.31)

Substituting this into (3.28), yields

‖wh‖0,G <∼ ‖vh‖0,G. (3.32)

In the following we estimate ‖ph‖1,G. If suffices to consider ‖‖p̃h,1‖1,Dk
. Since p̃h,1 is

discrete harmonic in Dk, we have

‖p̃h,1‖1,Dk
<∼ ‖p̃h,1‖ 1

2
,∂Dk

(k = 2, 3). (3.33)

Define the interpolation operators I0
f1k

and I0
∂f1k

as follows: for ψh ∈ Zh(G), the function

I0
f1k

ψh (resp. I0
∂f1k

ψh) equals ψh at the nodes in the interior of f1k (resp. on ∂f1k) and
vanishes at all the other nodes (resp. at all the nodes not on ∂f1k). From the definition of
p̃h,1, we have p̃h,1 = I0

f1k
p̃h,1 + I0

∂f1k
p̃h,1 on ∂Dk. Then, it follows by (3.33) that

‖p̃h,1‖1,Dk
<∼ ‖I0

f1k
p̃h,1‖ 1

2
,∂Dk

+ ‖I0
∂f1k

p̃h,1‖ 1
2
,∂Dk

<∼ ‖I0
f1k

p̃h,1‖
H

1
2
00(f1k)

+ ‖p̃h,1‖0,∂f1k

= ‖ph,1‖
H

1
2
00(f1k)

+ ‖ph,1‖0,∂f1k
.

Therefore, by using the “face” lemma and “edge” lemma (cf.[30] and [31]), we further obtain

‖p̃h,1‖1,Dk
<∼ log(1/h)‖ph,1‖ 1

2
,∂D1

<∼ log(1/h)‖ph,1‖1,D1 (k = 2, 3).

Then, as in the estimate for ‖wh‖1,G (but (3.31) needs to be used), we get

‖ph‖1,G <∼ log(1/h)‖vh‖0,G.

Combining this with (3.32), gives the second inequality in (3.14). Moreover, we can similarly
derive (3.15) by (3.18) and (3.23). ]

Remark 3.2 The construction of the decomposition (3.24) is a bit technical. The main
difficulty comes from the definition of the vector-valued function wh, which must satisfy
L2 stability. A natural idea is to extend wh,1 onto G such that the extension is discrete
harmonic in D2 and D3, but the resulting extension may not satisfy the L2 stability (3.31).
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4 Regular Helmholtz decompositions preserving local zero
tangential complements

In this section we present regular Helmholtz decompositions for vector-valued functions that
have zero tangential complements on some edges of a polyhedron. To this end, we need to
build a serials of auxiliary results. Before giving these auxiliary results, we introduce a
discrete curl-harmonic extension and describe its stability.

The discrete curl-harmonic extension operator Eh : Vh(∂G) → Vh(G) is defined as
follows: for any Φ ∈ Vh(∂G), EhΦ ∈ Vh(G) satisfies EhΦ× n = Φ on ∂G, and

(curl EhΦ, curl vh) = 0, ∀vh ∈ V 0
h (G)

and
(EhΦ, ∇qh) = 0, ∀qh ∈ Z0

h(G).

Let divτ be the tangential divergence defined in [1], which was called surface curl in
[29]. For vh ∈ Vh(G), we have curlSvh = divτ (n× vh) = (curl vh) · n; see [1]. For ease of
understanding, we directly use the notation (curl vh) · n in the rest of this paper.

The following result can be found in [1].
Proposition 4.1 (trace inequality of vector-valued function) For any vh ∈ Vh(G), we have

‖(curl vh) · n‖− 1
2
,∂G

<∼ ‖curl vh‖0, G. (4.1)

]
Proposition 4.2 (stability of the curl-harmonic extension) For any vh ∈ Vh(G), we have

‖curl (Eh(vh × n)|∂G)‖0,G <∼ ‖(curl vh) · n‖− 1
2
,∂G. (4.2)

Proof. Set Φ = (vh × n)|∂G. Let q(Φ) ∈ H(curl; G) be defined by (4.22)-(4.23) in [19] (see
also [1]), and define w̃(Φ) = curl q(Φ). Then, by (4.22)-(4.23) in [19], we have w̃(Φ)×n = Φ
and we can verify that (notice that div q(Φ) = 0 from Lemma 3.5 in [1])

‖curlw̃(Φ)‖δ,G <∼ ‖divτΦ‖δ− 1
2
,∂G, ∀δ ∈ [0, δ0] for some δ0 ∈ (

1

2
, 1).

Define w̃h(Φ) = rhw̃(Φ). By the interpolation estimate in [2, 7] and the inverse estimate in
[2], we can further show that

‖curl w̃h(Φ)‖0,G <∼ ‖divτΦ‖− 1
2
,∂G.

Now the inequality (4.2) is a direct result of the above estimate and the minimal property
of energy of Eh(Φ). ]

Lemma 4.1 Let f be a (closed) face of G, and assume that vh ∈ Vh(G) satisfies vh ·t∂f = 0
on ∂f. Then there exist ph ∈ Zh(G), wh ∈ (Zh(G))3 and Rh ∈ Vh(G), which satisfy ph = 0,
wh = 0 and Rh · t∂f = 0 on ∂f, such that

vh = ∇ph + rhwh + Rh, (4.3)

with the following estimates

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖wh‖0,G + ‖ph‖1,G <∼ log(1/h)‖v‖0,G (4.4)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (4.5)

The conclusion is also valid for the case when f is replaced by a union of some faces.
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Proof. We separate the proof into two steps.

Step 1: Establish the desired decomposition.
Let vh,f ∈ Vh(G) be an extension of (vh × n)|f into Vh(G), such that λe(vh,f) = 0 for

any e ⊂ fc = (∂G\f) ∪ ∂f, and it is discrete curl-harmonic on G. It follows by Lemma 3.1
that vh,f admits the decomposition

vh,f = rhΦh,f +∇ph,f + Rh,f (4.6)

with Φh,f ∈ (Zh(G)∩H1
fc

(G))3, ph,f ∈ Zh(G)∩H1
fc

(G) and Rh,f ∈ Vh(G). Moreover, they
satisfy

‖Φh,f‖1,G <∼ ‖curl vh,f‖0,G, ‖Φh,f‖0,G + ‖ph,f‖1,G <∼ log(1/h)‖vh,f‖0,G (4.7)

and
h−1‖Rh,f‖0,G <∼ ‖curl vh,f‖0,G. (4.8)

Then we define
v̂h,f = vh − (∇ph,f + rhΦh,f + Rh,f). (4.9)

We can check that v̂h,f×n = 0 on f. By Lemma 3.1, the function v̂f,h has the decomposition

v̂h,f = ∇p̂h + rhΦ̂h + R̂h (4.10)

for some p̂h ∈ Zh(G) ∩H1
f(G), Φ̂h ∈ (Zh(G) ∩H1

f(G))3 and R̂h ∈ Vh(G), such that

‖Φ̂h‖1,G <∼ ‖curl v̂h,f‖0,G, ‖Φ̂h‖0,G + ‖p̂h‖1,G <∼ log(1/h)‖v̂h,f‖0,G (4.11)

and
h−1‖R̂h‖0,G <∼ ‖curl v̂h,f‖0,G. (4.12)

Define
wh = Φh,f + Φ̂h, ph = ph,f + p̂h and Rh = Rh,f + R̂h.

Then we get the decomposition

vh = ∇ph + rhwh + Rh. (4.13)

It is easy to see that ph and wh vanish on ∂f, and so Rh · t∂f = 0 on ∂f.

Step 2: Verify the desired estimate (4.4) for the decomposition (4.13).
By the definition of wh and the triangle inequality, we have

‖wh‖1,G <∼ ‖Φh,f‖1,G + ‖Φ̂h‖1,G.

This, along with (4.7), (4.11) and (4.10), leads to

‖wh‖1, G <∼ ‖curl vh,f‖0,G + ‖curl v̂h,f‖0,G
<∼ ‖curl vh,f‖0,G + ‖curl (rhΦ̂h)‖0,G + ‖curl R̂h‖0,G.

Then, from (4.11), (4.12) and (4.9), together with (4.7) and (4.8), we further get that

‖wh‖1, G <∼ ‖curl vh,f‖0,G + ‖curl vh‖0,G. (4.14)
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Therefore, by the definition of vh,f and using the stability of curl-harmonic extension, we
have

‖wh‖1, G <∼ ‖(curl vh,f) · n‖− 1
2
,∂G + ‖curl vh‖0,G

<∼ ‖(curl vh) · n‖− 1
2
,f + ‖curl vh‖0,G. (4.15)

On the other hand, using the known face H−
1
2 -extension (cf. [16],[18] and [29]) and the

trace inequality, we obtain

‖(curl vh) · n‖− 1
2
,f <∼ log(1/h)‖(curl vh) · n‖− 1

2
,∂G

<∼ log(1/h)‖curl vh‖0,G.

Substituting this into (4.15), yields the first inequality of (4.4). The second inequality in
(4.4) and the inequality (4.5) can be derived similarly. ]

From the above proof, we can obtain the following result
Corollary 4.1. Let f be a (closed) face of G, and Γ be a union of several faces of G.
Assume that vh ∈ Vh(G) satisfies vh · t∂f = 0 on ∂f and vh×n = 0 on Γ. Then there exist
ph ∈ Zh(G), wh ∈ (Zh(G))3 and Rh ∈ Vh(G), which satisfy ph = 0, wh = 0 on Γ ∪ ∂f and
λe(Rh) = 0 for any e ⊂ Γ ∪ ∂f, such that

vh = ∇ph + rhwh + Rh. (4.16)

Moreover, we have the following estimates

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖wh‖0,G + ‖ph‖1,G <∼ log(1/h)‖v‖0,G (4.17)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (4.18)

Proof. As in the proof of Lemma 4.1, we set fc = (∂G\f) ∪ ∂f and use Lemma 3.1 for fc

and Γ ∪ f, respectively. ]

Lemma 4.2 Let e be a (closed) edge of G, and vh be a finite element function in Vh(G)
such that vh · te = 0 on e. Then vh admits a decomposition

vh = ∇ph + rhwh + Rh

for some ph ∈ Zh(G), wh ∈ (Zh(G))3 and Rh ∈ Vh(G), which satisfy ph = 0, wh = 0,
Rh · te = 0 on e. Moreover, the following estimates hold

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖ph‖1,G <∼ log(1/h)‖v‖curl,G (4.19)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (4.20)

The conclusion is also valid for the case when e is replaced by a connected union of several
edges on one face of G.

Proof. We separate the proof into three steps.

Step 1: Establish an edge-related decomposition.
Let f be a face containing the edge e. We first consider a decomposition of the tangential

component vh · t∂f of vh on ∂f. For convenience, we write ec = ∂f\e. Let s be the arc-
length along ec, taking values from 0 to l0, where l0 is the total length of ec. In terms of
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s, the function vh · tec is piecewise linear on the interval [0, l0], denoted by v̂(s). Then we
define

Ce =
1

l0

∫ l0

0
v̂(s) ds, φe(t) =

∫ t

0
(v̂(s)− Ce)ds , ∀ t ∈ [0, l0] .

Clearly we see φe(t) vanishes at t = 0 and l0. We can extend φe naturally by zero onto e,
then extend by zero into ∂G and G such that its extensions φ̃e ∈ Zh(G). In the following,
we define an extension C̃e of Ce such that C̃e belongs to (Zh(G))3 and vanishes on e.
Moreover, we require that C̃e satisfies (rhC̃e) · t∂f = Ce on ec = ∂f\e and

‖C̃e‖1,Ω̂ <∼ |Ce|. (4.21)

Let Ξ denote the set of the nodes on G, and let = denote the set of the nodes in ec. Then
the values of the vector-valued function C̃e on the nodes in G\= are defined to be zero.
Moreover, the values of the vector-valued function C̃e on the nodes in = are defined such
that C̃e is linear on each (coarse) edge on ec and ‖C̃e‖20,ec reaches the minimal value under

the constraint (rhC̃e) · t∂f = Ce on ec. Notice that the number of degrees of freedom of
the function C̃e, which equals three times the number of vertices in ec, is greater than the
number of coarse edges contained in ec. Then the minimization problem (with a quadric
subject functional and compatible linear constraints) has a solution. In particular, if Ce = 0,
the desired vector-valued function C̃e = 0. Since each edge on Ec is of size O(1), we have

‖C̃e‖0,ec <∼ |Ce|.

Moreover, by the definition of C̃e and the discrete norms, we get

‖C̃e‖1,Ω̂ <∼ ‖C̃e‖0,ec .

Thus the inequality (4.21) indeed holds. By the definitions of φ̃e and C̃e, one can verify
that (cf. [29]) that (since vh · te = 0)

vh · t∂f = (∇φ̃e) · t∂f + (rhC̃e) · t∂f (4.22)

and
‖φ̃e‖1,G <∼ log(1/h)(‖vh‖0,G + ‖curl vh‖0,G). (4.23)

Step 2: Construct the desired decomposition in Lemma 4.2. For the purpose, we set

v̂h,e = vh − (∇φ̃e + rhC̃e). (4.24)

By (4.22) we know v̂h,e · t∂f = 0 on ∂f. For the function v̂h,e in (4.24), by Lemma 4.1 one

can find functions p̂h ∈ Zh(G), ŵh ∈ (Zh(G))3 and R̂h ∈ Vh(G) such that p̂h and ŵh vanish
on ∂f, and

v̂h,e = ∇p̂h + rhŵh + R̂h,

with the following estimates

‖ŵh‖1,G <∼ log(1/h)‖curl v̂h,e‖0,G, ‖p̂h‖1,G <∼ log(1/h)‖v̂h,e‖0,G (4.25)

and
h−1‖R̂h‖0,Ω̂ <∼ log(1/h)‖curl v̂h,e‖0,Ω̂. (4.26)
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Now by defining

ph = φ̃e + p̂h, wh = C̃e + ŵh and Rh = R̂h ,

we get the final decomposition

vh = ∇ph + rhwh + Rh (4.27)

such that ph = 0 and wh = 0 on e.

Step 3: Derive the desired estimate in Lemma 4.2 for the decomposition (4.27).
Noting that vh · te = 0 on e, so vh · t∂f = 0 on e, we have by the Green’s formula on f

and change of variables (cf. [29]) that (with l being the total arclength of ∂F )

Ce =
1

l0

∫ l

0
v̂(s)ds =

1

l0

∫
f

(curl vh) · nds. (4.28)

Using the face H−1/2-extension (cf. [16],[18] and [29])) again, we have

‖(curl vh) · n‖− 1
2
,f <∼ log

1
2 (1/h)‖(curl vh) · n‖− 1

2
, ∂G

and further get by (4.1)

|
∫
f

(curl vh) · nds| <∼ ‖(curl vh) · n‖− 1
2
,f · ‖1‖ 1

2
, f <∼ log

1
2 (1/h)‖curl vh‖0,G.

This, along with (4.28), leads to

|Ce| <∼ log
1
2 (1/h)‖curl vh‖0,G.

Then, by (4.21) we obtain

‖C̃e‖1,Ω̂ <∼ log
1
2 (1/h)‖curl vh‖0,G.

By the definition of wh and the above inequality, together with (4.25), (4.24) and (4.23),
we deduce the first estimate in (4.19)

In a similar way, we can prove the second estimate in (4.19) and the inequality (4.20)
by (4.26). ]

Remark 4.1 There is a key difference in the proof of the above lemma from that of Lemma
4.3 in [17]: since the extension C̃e in the above proof must belong to the space (Zh(G))3,
C̃e can not be defined to be the natural zero extension of Ce as in [17]. The same problem
will appear in the proofs of the lemmas below.

Lemma 4.3 Let v be a vertex of G and vh be a function in Vh(G). Then we can write vh
as

vh = ∇ph + rhwh + Rh

for some ph ∈ Zh(G), wh ∈ (Zh(G))3 and Rh ∈ Vh(G) satisfying ph(v) = 0 and wh(v) = 0.
Moreover, we have

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖∇ph‖0,G <∼ ‖vh‖curl,G (4.29)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (4.30)
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Proof. Consider a (closed) face f containing v as its vertex. Like Step 1 in the proof of
Lemma 4.2, we can define φ∂f to be a function that is piecewise linear and continuous on
∂f such that φ∂f(v) = 0, and define C∂f to be a constant such that vh · t∂f = φ′∂f + C∂f
on ∂f. In fact, they can be defined as

C∂f =
1

l

∫ l

0
(vh · t∂f)(s) ds, φ∂f(t) =

∫ t

0
(vh · t∂f − C∂f)(s)ds , ∀ t ∈ [0, l] ,

where l is the length of ∂f and t = 0 (and t = l) corresponds the vertex v. Let c = γe(φ∂f)
denote the average of φ∂f on e, where e is an edge or a union of several edges of f. Define
an extension φ̃v ∈ Zh(G) of φ∂f, such that φ̃v equals to the average c = γe(φ∂f) at all the
nodes on G except those on ∂f. Then (cf. [29])

‖∇φ̃v‖0,G = ‖∇(φ̃v−c)‖0,G <∼ ‖φ∂f−c‖0,∂f <∼ ‖φ
′
∂f‖H−1(∂f)

<∼ log(1/h)‖vh‖curl, G. (4.31)

We define a similar extension C̃v of C∂f with C̃e (defined in Lemma 4.2), such that C̃v
belongs to (Zh(G))3 and vanishes at v, and it satisfies the condition (rhC̃v) · t∂f = C∂f on
∂f and the stability

‖C̃v‖1,G <∼ ‖C̃v‖0,∂f <∼ |C∂f| <∼ log
1
2 (1/h)‖curl vh‖0,G.

Define
v̂h,v = vh − (φ̃v + rhC̃v).

Then we have v̂h,v · t∂f = 0. As in the proof of Lemma 4.2, we can use Lemma 4.1 for v̂h,v
to build the desired decomposition of vh. ]

Remark 4.2 Comparing the second inequality in (4.19), we find that the second inequality
in (4.29) holds only for the semi-norm of ph. The main reason is that a stable estimate of
‖φ̃v‖0,G can not be built except that the constant c in (4.31) vanishes.

Lemma 4.4 Let Γ be a (closed) union of some faces of G, and e be a closed edge of G with
e * Γ. Assume that vh ∈ Vh(G) satisfies vh × n = 0 on Γ and vh · te = 0 on e. Then vh
can be decomposed as

vh = ∇ph + rhwh + Rh (4.32)

for some ph ∈ Zh(G) and wh ∈ (Zh(G))3 and Rh ∈ Vh(G) such that ph and wh vanish on
Γ ∪ e. Moreover, we have

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖ph‖1,G <∼ log(1/h)‖vh‖curl,G (4.33)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (4.34)

The result is also valid when e is replaced by a connected union of several edges on one face
of G.

Proof. The position relations between e and Γ have two possible situations: (i) there exists
a face f containing e such that e ∪ (f ∩ Γ) is a connected set in ∂f (which includes three
cases: (a) f ∩ Γ = ∅, (b) f ∩ Γ is an endpoint of e, (c) f ∩ Γ is just an edge e′ adjoining
e); (ii) e ∩ Γ = ∅ and the intersection of any face containing e with Γ is an edge E′ that
does not adjoin with e, i.e., e ∪ e′ is not a connected set in the boundary of this face. For
the situation (i), the results in Lemma 4.4 can be built as in the proof of Lemma 4.2 (for
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the case (c), we replace e by e∪ e′ since the function vh has the zero degrees of freedom on
e ∪ e′), but using Corollary 4.1 instead of Lemma 3.1. Now we consider the situation (ii)
(see Figure 2). In this situation the lemma can not be proved as in Lemma 4.2 since the
defining function φ̃e may not vanish on Γ, so we have to combine the ideas in the proofs of
Lemma 3.1, Lemma 4.1 and Lemma 4.2.

Figure 2: The small cube is G; the shaded part denotes Γ; the large cuboid is the domain B

As in the proof of Lemma 3.1, let B be a polyhedron domain containing G as its subdo-
main (when G is convex, we can require that B is also convex) such that ∂G∩ ∂B = ∂G\Γ
and the size of the complement D = B\G is a positive number independent of h. It is easy
to see that ∂G ∩ ∂D = Γ. We extend vh onto the global B by zero, i.e., the extension ṽh
satisfying ṽh = vh on G and ṽh = 0 on D̄. Since vh×n = 0 on Γ, we have ṽh ∈ H(curl; B).
Of course, e is also an edge of the auxiliary polyhedron B.

We can construct an auxiliary grids in D, then we obtain a partition on the global
domain B. Let Vh(B) be the resulting edge finite element space on B. Then ṽh ∈ Vh(B).
We choose a (closed) face f of B such that f contains e as its edge, and set fc = (∂B\f)∪∂f.
Let φ̃e ∈ Zh(B) and C̃e ∈ (Zh(B))3 be the functions defined as in Lemma 4.2. Then φ̃e
and C̃e vanish on e, and (ṽh− C̃e−∇φ̃e) · t∂f = 0 on ∂f. As in Lemma 4.1, but using the
continuous results (3.1) and (3.2), we can build a decomposition

ṽh − C̃e −∇φ̃e = ∇(pf + pfc) + (wf + wfc) on B,

with pf ∈ H1
f(B), pfc ∈ H1

fc
(B), wf ∈ (H1

f(B))3 and wfc ∈ (H1
fc

(B))3. Namely,

ṽh = ∇(φ̃e + pf + pfc) + (C̃e + wf + wfc) on B. (4.35)

Moreover, the following inequalities hold

‖C̃e‖1,B + ‖wf‖1,B + ‖wfc‖1,B <∼ log(1/h)‖curl ṽh‖0,B (4.36)

and
‖φ̃e‖1,B + ‖pf‖1,B + ‖pfc‖1,B <∼ log(1/h)‖ṽh‖curl,B. (4.37)

Define ϕ = φ̃e + pf + pfc and w = C̃e + wf + wfc . By (4.35), we have

ṽh = ∇ϕ+ w on B. (4.38)
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Then ϕ|D ∈ H2(D) since w ∈ (H1(B))3 and ṽh = 0 on D. Let δ0 be a positive constant
independent of h. We choose a domain DG ⊂ G such that D̄G ∩ D̄ = Γ and the size of DG

is about δ0. Notice that e ∩ Γ = ∅, we can require dist(e, DG) ≥ δ0. As in the proof of
Lemma 3.1, we can define a stable extension ϕ̃ of ϕ|D from D onto the global B such that
ϕ̃ ∈ H2(B) and vanishes on G\DG.

Set p = (ϕ− ϕ̃)|G and Φ = (w +∇ϕ̃)|G. Then p ∈ H1
Γ(G) and Φ ∈ (H1

Γ(G))3. It follows
by (4.38) that

vh = ṽh = ∇ϕ+ w = ∇p+ Φ on G.

Then there is a function ph ∈ Zh(G) such that

vh = rh(∇p+ Φ) = ∇ph + rhΦ on G. (4.39)

Since p vanishes on Γ, the function ph also vanishes on Γ. On the other hand, by the
definitions of p and ϕ we have

rh∇p = rh∇φ̃e + rh∇pf + rh∇pfc − rh∇ϕ̃ = ∇φ̃e +∇ph,f +∇ph,fc −∇ϕ̃h.

Moreover, from the definitions of φ̃e, pf, pfc and ϕ̃, we know that φ̃e, ph,f, ph,fc and ϕ̃h
vanish at e (since dist(e, DG) ≥ δ0). Thus ph = φ̃e + ph,f + ph,fc − ϕ̃h vanishes at e.
Let Πh : (H1(G))3 → (Zh(G))3 denote the Scott-Zhang interpolation operator, and define
wh = ΠhΦ and Rh = rh(I − Πh)Φ. Similarly, we can show that wh vanishes on Γ and e.
Then the decomposition (4.32) follows by (4.39).

The estimates in (4.33) can be obtained by using (4.36)-(4.37), the stability of the
extension ϕ̃ and the approximation of Πh (refer to the proof of Lemma 3.1). Here we need
to use the fact that the stability constant of the extension ϕ̃ is independent of h (since the
size δ0 of DG is independent of h). ]

We point out that, if the edge e in Lemma 4.4 is replaced by a vertex v (refer to Lemma
4.3), we fail to obtain a similar result with Lemma 4.4. The difficulty comes from the fact
that the estimate (4.37) does not hold yet if replacing φ̃e by φ̃v (see Remark 4.2), so stability
estimates of the extension ϕ̃ can not be built. Because of this, we have to take special care
for the case with a vertex.

Lemma 4.5 Let Γ be a (closed) union of some faces of G, and v be a vertex of G (v 6∈ Γ).
Assume that vh ∈ Vh(G) satisfies vh×n = 0 on Γ. If there exist a face f containing v such
that vh satisfies γe(φ∂f) = 0 for an edge e (or a union of several edges) of f , where the
function φ∂f was defined in the proof of Lemma 4.3, then the decomposition and estimates
in Lemma 4.4 still hold, with ph and wh vanishing on Γ and v. The results are also valid
when Γ is replaced by a connected union of several edges on one face.

Proof. We first consider the case with f ∩ Γ = ∅. As in the proof of Lemma 4.3, we define
φ̃v and C̃v and set

v̂h,v = vh − (φ̃v + rhC̃v).

Then we have λe(v̂h,v) = 0 for any e ⊂ ∂f ∪ Γ by the definitions of φ̃v and C̃v, together
with the assumption γe(φ∂f) = 0. Thus we can use Corollary 4.1 for v̂h,v to build the
desired decomposition of vh and the estimates (refer to the proof of Lemma 4.2).

The case with f ∩ Γ 6= ∅ is a bit complicated. Let B and ṽh be defined in the proof of
Lemma 4.4, and let C∂f and φ∂f be defined in Lemma 4.3. We use f̃ ⊂ ∂B to denote a face
of B such that f̃ contains f (see Figure 3). We need to define two functions φ̃v ∈ Zh(B)
and C̃v ∈ (Zh(B))3, which can be regarded as extensions of φ∂f and C∂f.
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Figure 3: The left rectangle is f; the large rectangle denotes f̃.

At first we extend the definition of φ∂f onto ∂f̃. Without loss of generality, we assume
that f ∩ Γ = e′ be an edge of f, and f̃\f have four edges, one of which is just e′ and the
others of which are denoted by e1, e2 and e3, where e1 and e3 are adjacent with e′ but
e′ ∩ e2 = ∅. Then ∂f̃ = (∂f\e′)∪ e1 ∪ e2 ∪ e3. For convenience, we use v1,v2,v3 and v4 to
denote the four vertices of f̃\f, where v1 and v4 are two endpoints of e′, v2 and v3 are two
endpoints of e2.

Let ti denote the arc-length coordinate of vi (i = 1, · · · , 4) with t1 < t2 < t3 < t4. Define
φ∂f̃ ∈ Zh(∂f̃) as follows: φ∂f̃ = φ∂f on ∂f\e′ and φ∂f̃ is linear on ei (i = 1, 2, 3) with

φ∂f̃(t1) = φ∂f̃(t2) = φ∂f(t1) and φ∂f̃(t3) = φ∂f̃(t4) = φ∂f(t4). Then φ̃v ∈ Zh(B) is defined

such that φ̃v = φ∂f̃ on ∂f̃ and it vanishes at all the nodes except on ∂f̃. As in the proof of

Lemma 4.2, we define C̃v ∈ (Zh(B))3 such that: (i) C̃v = 0 at v; (ii) ‖C̃v‖0,∂f̃ reaches the

minimal value under the constraints (rhC̃v) · t∂f̃ = C∂f on ∂f\e′ and e2, (rhC̃v) · t∂f̃ = 0

on e1 and e3; (iii) C̃v vanishes at all the nodes except on ∂f̃. Since vh · te = 0, φ∂f is
also linear on e′ and φ∂f(t4) − φ∂f(t1) = −C∂f. Thus, by the definition of φ∂f̃, we have
φ′
∂f̃ = −C∂f on e3 and φ′

∂f̃ = 0 on e1 and e2. Furthermore, we can verify that

(ṽh −∇φ̃v − C̃v) · t∂f̃ = (ṽh − C̃v) · t∂f̃ − φ̃
′
v = 0 on ∂f̃.

Then the results can be built as in the proof of Lemma 4.4. To this end, we need to estimate
‖C̃v‖1,B and ‖φ̃v‖1,B as in Lemma 4.3. Thanks to the assumption γe(φ∂f) = 0, the L2

norm ‖φ̃v‖0,B is also bounded with a logarithmical factor only. ]

Remark 4.3 The condition γe(φ∂f) = 0 in Lemma 4.5 seems absolutely necessary. In
fact, we can construct a counterexample: define vh = ∇φh with φ ∈ Zh(G) and vanishing at
all the nodes except v, and choose Γ as a union of all the faces that do not contain v. For
this example, the decomposition satisfying the conditions in Lemma 4.5 does not exist since
the estimates mean that wh = Rh = 0 and so ∇ph = vh = ∇φh by the decomposition, i.e.,
ph − φh=const, but the function ph − φh must vanish on Γ and does not vanish at v.

Lemma 4.6 Let e1, · · · ,en be (closed) edges of G, which satisfy el ∩ ej = ∅ for any two
different j and l. Assume that vh ∈ Vh(G) satisfies vh · tel

= 0 on each el. Then vh can be
decomposed as

vh = ∇ph + rhwh + Rh
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for some ph ∈ Zh(G) and wh ∈ (Zh(G))3 and Rh ∈ Vh(G) such that ph and wh vanish on
each edge el. Moreover, we have

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖ph‖1,G <∼ log(1/h)vh‖curl,G (4.40)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (4.41)

The results are also valid when el is replaced by a connected union of edges on one face.

Proof. We first consider a simple case that, for each el, there exists a face fl ⊂ ∂G such
that fl contains el and the intersection of fl with the other edges is connected with el (a
particular case is that the face fl does not adjoin the other edges). For each el, let e′l be
the intersection of fl with the other edges. By the assumption, el ∪ e′l is a union of several
connected edges of the face fl. Regarding el ∪ e′l as the edge e in the proof of Lemma 4.2
and almost repeating the proof process (but using Lemma 3.1 for Γ = ∪Nl=1fl), we can build
the desired results.

If the above condition is not met, the proof of this lemma is a bit technical. Without
loss of generality, we assume that this condition is not satisfied for each el (An example is
that e1,e2,e3,e4 are just four parallel edges of a cube G, see Figure 4). This means that,
for each edge el, any face containing el must contain another different edge el′ that is not
connected with el. In this situation, the above proof is not practical since the functions φ̃e
and C̃e defined in the proof of Lemma 4.2 may not vanish on el′ .

Figure 4: An example with four edges: the left shaded polyhedron denotes the
subdomain G′1, the middle polyhedron denotes G′0.

Notice that the considered edges are disjunct each other, we can decompose G into a
union of non-overlapping subdomains G′0, G

′
1, · · · , G′m such that: (i) each subdomain G′l is

a polyhedron with the size O(1); (ii) Ḡ′l ∩ Ḡ′j = ∅ for j 6= l (l, j 6= 0), and G′0 just has a
common face Γ′0l with each G′l (l 6= 0); (iii) for l = 1, · · · ,m, the subdomain G′l contains el
as one of its edges, but the subdomain G′0 does not intersect with any el. In general we
can not require each subdomain G′l to be a union of some elements. Because of this, for
each l we choose a small perturbation Gl of G′l, where Gl is a union of all the elements K
satisfying meas(K ∩ Gl) ≥ 1

2meas(K) (meas(D) denotes the measure (i.e., volume) of the
domain D). It is clear that Gl is not a usual polyhedron since Γ0l = Ḡ0 ∩ Ḡl is not a plane
face yet. Fortunately, all the subdomains {Gl} still constitute a union of G and keep the
other properties of {G′l}.
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For each el, we use Lemma 4.2 to build a Helmholtz decomposition

vh = rhw
(l)
h +∇p(l)

h + R
(l)
h on G, (4.42)

with w
(l)
h and p

(l)
h vanishing on el (but may not vanishing on the other edges). The decom-

position is stable with a logarithmical factor. Let d0 be a given positive number independent
of h. For l = 1, · · · ,m, we choose a ball Dl containing Gl such that dist(∂Dl, ∂Gl) ≥ d0

and Dl does not intersect with any Gj for j 6= 0, l. Since Gl is a small perturbation of the

polyhedron G′l, there exists an extension w̃(l) (resp. p̃(l)) of w
(l)
h |Gl

(resp. p
(l)
h |Gl

) such that:
(a) w̃(l) ∈ (H1(R3)3 (resp. p̃(l) ∈ H1(R3); (b) w̃(l) and p̃(l) vanish on the outside of Dl; (c)

‖w̃(l)‖1,G0
<∼ ‖w

(l)
h ‖1,Gl

and ‖p̃(l)‖1,G0
<∼ ‖p

(l)
h ‖1,Gl

. For each l, let R̃
(l)
h ∈ Vh(G) denote the

standard zero extension of R
(l)
h |Gl

. Define

ṽ
(0)
h = vh −

m∑
l=1

(rhw̃
(l) +∇p̃(l) + R̃

(l)
h ) on G0. (4.43)

It is clear that ṽ
(0)
h ∈ H(curl;G0). Since w̃(l), p̃(l) and R̃

(l)
h vanish on Ḡj for j 6= 0, l, by

(4.42) we have ṽ
(0)
h × n = 0 on Γ0l for l = 1, · · · ,m. By Lemma 3.1 (refer to Remark 3.1),

ṽ
(0)
h admits a stable decomposition

ṽ
(0)
h = w̃(0) +∇p̃(0) on G0 (4.44)

for w̃(0) ∈ (H1(G0))3 and p̃(0) ∈ H1(G0), with w̃(0) and p̃(0) vanishing on Γ0l for l = 1, · · · ,m.
Combing (4.43) and (4.44), we have

vh = w̃(0) +∇p̃(0) +
m∑
l=1

(rhw̃
(l) +∇p̃(l) + R̃

(l)
h ) on G0.

Thus

vh = rh(w̃(0) +
m∑
l=1

w̃(l)) +∇p(0)
h +

m∑
l=1

R̃
(l)
h on G0 (4.45)

with p
(0)
h satisfying ∇p(0)

h = rh∇(p̃(0) +
m∑
l=1

p̃(l)).

Let Πh : (H1(G0))3 → (Zh(G0))3 denote the Scott-Zhang interpolation operator, which
can preserve the values of a linear polynomial on some elements of the boundary ∂G0. Define

w
(0)
h = Πh(w̃(0) +

m∑
l=1

w̃(l)) and R
(0)
h = rh(I −Πh)(w̃(0) +

m∑
l=1

w̃(l)) +
m∑
l=1

R̃
(l)
h .

Then (4.45) can be written as

vh = rhw
(0)
h +∇p(0)

h + R
(0)
h on G0. (4.46)

It is clear that w
(0)
h = w

(l)
h and p

(0)
h = p

(l)
h on Γ0l for l = 1, · · · ,m, which implies that

R
(0)
h × n = R

(l)
h on Γ0l for l = 1, · · · ,m. Thus we naturally define wh = w

(l)
h , ph = p

(l)
h

and Rh = R
(l)
h on Gl for l = 0, 1, · · · ,m, and we have wh ∈ (Zh(G))3, ph ∈ Zh(G) and

Rh ∈ Vh(G), which have the zero degrees of freedom on all the edges el. It is easy to see
from (4.42) and (4.46) that the desired Helmholtz decomposition is valid for the defined
functions. Besides, we can verify that the resulting Helmholtz decomposition is also stable
with a logarithmical factor. ]

We can replace the edges in Lemma 4.6 by vertices, and we have the following lemma
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Lemma 4.7 Let vh ∈ Vh(G) and v1, · · · ,vm be different vertices of G. Then there exist
functionals Fl (l = 1, · · · ,m) defined on Vh(G) such that every function vh satisfying the m
constraints Flvh = 0 (l = 1, · · · ,m) can be decomposed as

vh = ∇ph + rhwh + Rh

for some ph ∈ Zh(G) and wh ∈ (Zh(G))3 and Rh ∈ Vh(G), with ph and wh vanishing at
each vertex vl. Moreover, we have

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖ph‖1,G <∼ log(1/h)vh‖curl,G (4.47)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (4.48)

Proof. At first we assume that , for each vl, there exists a (closed) face fl ⊂ ∂G such that
fl contains vl but fl ∩ fi = ∅ for any i 6= l. For each vl, let φ̃vl

and C̃vl
be the functions

defined as in the proof of Lemma 4.3. Define

v̂h = vh −
m∑
l=1

(∇φ̃vl
+ rhC̃vl

).

Then v̂h · t∂fl
= 0 on ∂fl for l = 1, · · · ,m. As in Lemma 4.3, we use Lemma 4.1 to build a

decomposition of v̂h and further get a decomposition of vh. Let el ⊂ ∂fl be an edge (or a
union of several edges) of fl. For each l, define a functional Fl as Flvh = γel

(φ∂fl
), where

φ∂fl
is defined as in the proof of Lemma 4.3 and γel

(φ∂fl
) denotes the average of the function

φ∂fl
on el. If vh satisfies Flvh = 0 for l = 1, · · · ,m, then the functions φ̃vl

and C̃vl
vanish

at all the vertices v1, · · · ,m, which implies that the resulting decomposition is the desired
decomposition of vh. Moreover, the norm ‖φ̃vl

‖0,G has nearly optimal estimate because of
the constraint Flvh = 0 (l = 1, · · · ,m) and so ‖ph‖1,G satisfies the desired estimate.

Now we consider the case that, for some vertex vl, any face containing vl at least contains
another vertex vi (i 6= l). Let fl denote such a face that contains both vl and vi. For this
face fl and the vertex vl, we define a function φ∂fl

as in the proof of Lemma 4.3 and define a
functional Fl in the above way. For the vertex vi, define a functional Fi by Fivh = φ∂fl

(ti),
where ti is the arc-length of the vertex vi. Then the extension φ̃vl

of φ∂fl
vanishes at all

the vertices v1, · · · ,vm if vh satisfies the constraints Flvh = Fivh = 0. We can define a
function C∂fl

as in the proof of Lemma 4.3 such that C∂fl
vanishes at both vl and vi and

satisfies some constraints. We point out that, if the face fl contains more than two vertices
in v1, · · · ,vm, the number of the degrees of freedom of C∂fl

may be not enough to satisfy
all the constraints in the proof of Lemma 4.3. In this case, we have to choose an auxiliary
node vi′ at a suitable position of ∂f and add three degrees of freedom of C∂fl

at vi′ . With
the zero extension C̃vl

of C∂fl
, we define v̂h,vl

= vh − (∇φ̃vl
+ rhC̃vl

). Then we have
v̂h,vl

· t∂fl
= 0 on ∂fl. Thus we can use Lemma 4.1 to build a decomposition of v̂h,vl

and
we further get the desired decomposition of vh as in the proof of Lemma 4.3. ]

Remark 4.4 In the proofs of Lemma 4.1-Lemma 4.7, our main ideas are to transform the
problem for vanishing on a vertex v or an edge e into the problem to vanish on a face f
of G and then to use the regular Helmholtz decompositions given in Lemma 3.1, which can
preserve zero trace on this face.

Remark 4.5 In the previous results, a vertex is essential different from an edge. This
phenomenon can be intuitively explained as follows: the value of an edge finite element
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function vh at a vertex is not uniquely defined, but the two nodal finite element functions
defined by the Helmholtz decomposition of vh are required to vanish at the vertex. Thus
there is a gap between vh and the nodal finite element functions, which needs to be filled by
a constraint of vh.

Notice that, in all the previous Lemmas, a connected union of several edges on one face
has no essential difference from an edge. For simplicity of exposition, an “edge” is always
understood as an “edge” or a “connected union of edges on one face” in the rest of this
paper.

By using Lemma 4.4-Lemma 4.7, we can easily prove the following main result

Theorem 4.1 Let Γ be a (may be non-connected) union of some vertices, edges and faces of
G. Assume that the vector-valued function vh ∈ Vh(G) has zero degree of freedom λe(vh) = 0
for all e ⊂ Γ. Then, for each vertex v ∈ Γ, there exists a functional Fv defined on Vh(G)
such that, if vh satisfies all the constraints Fvvh = 0 (∀v ∈ Γ), the function vh admits a
decomposition

vh = ∇ph + rhwh + Rh

for some ph ∈ Zh(G), wh ∈ (Zh(G))3 and Rh ∈ Vh(G) such that ph = 0 and wh = 0 on Γ,
and λe(Rh) = 0 for all e ⊂ Γ. Moreover, we have

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖ph‖1,G <∼ log(1/h)‖vh‖curl,G (4.49)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (4.50)

In particular, when there is no vertex in Γ, the additional constraints are unnecessary.

]

Remark 4.6 Notice that the second estimate in (4.49) is different from that in (3.14). In
fact, if Γ indeed contains an edge or a vertex, then the L2 stability in (3.14) seems not valid
yet.

5 Regular Helmholtz decompositions on some non-Lipchitz
domains

In this section we try to extend some results in the previous section to non-Lipchitz domains.
Let G1 and G2 be two intersecting convex polyhedra, and set G = Ḡ1 ∪ Ḡ2. We consider
two particular cases: (1) the intersection ∂G1 ∩ ∂G2 is just the common edge of G1 and G2;
(2) the intersection ∂G1 ∩ ∂G2 is just the common vertex of G1 and G2. For the two cases,
G is not a Lipchitz domain.

The following two theorems can be viewed as extensions of Lemma 3.1 to the case of
non-Lipchitz domains.

Theorem 5.1 Let G be defined above, with Ḡ1 ∩ Ḡ2 being the common edge of G1 and G2,
and let Γ be a union of some faces of G1 and G2. Assume that the vector-valued function
vh ∈ Vh(G) satisfies vh × n = 0 on Γ, then vh admits a decomposition

vh = ∇ph + rhwh + Rh, (5.1)
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for some ph ∈ Zh(G), wh ∈ (Zh(G))3 and Rh ∈ Vh(G) such that ph = 0 and wh = 0 on Γ,
and Rh × n = 0 on Γ. Moreover, we have

‖wh‖1,G <∼ log(1/h)‖curl vh‖0,G, ‖ph‖1,G <∼ log(1/h)‖vh‖curl,G (5.2)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (5.3)

In particular, when Ḡ1∩Ḡ2 ⊂ Γ∩∂Gi for i = 1, 2, the logarithm factor in the above estimates
can be dropped.

Proof. For convenience, set e = Ḡ1 ∩ Ḡ2 and Γi = Γ∩ ∂Gi (i = 1, 2). We prove the theorem
according to three different position relations between e and Γi (i = 1, 2).

(i) e ⊂ Γi for i = 1, 2. We use Lemma 3.1 to build a decomposition of vh|Gi independently
for i = 1, 2. Then the resulting functions ph,i and wh,i vanish on Γi and so they also vanish
on e. Thus we can directly extend ph,i and wh,i into another domain by zero to get the global
extension of vh on G. In this case, there is no logarithm factor in the stability estimates.

(ii) e is contained in only one of Γ1 and Γ2, for example, Γ1. We use Lemma 3.1 to
build a decomposition of vh|G1 , but use Theorem 4.1 to get a decomposition of vh|G2 with
Γ = Γ2 ∪ e (notice that vh|G2 vanishes on Γ2 and e since e ⊂ Γ1 ⊂ Γ). Then the desired
decomposition can be built as in the above situation.

(iii) e∩ Γi = ∅ for i = 1, 2. We first use Lemma 3.1 to build the decomposition of vh|G1

vh = ph,1 + rhwh,1 + Rh,1 on G1, (5.4)

with ph,1 ∈ Zh(G1) and wh,1 ∈ (Zh(G1))3 vanishing on Γ1 (and so Rh,1 × n = 0 on Γ1).
Moreover, we have

‖wh,1‖1,G1
<∼ ‖curl vh‖0,G1 , ‖ph,1‖1,G1

<∼ ‖vh‖curl,G1 (5.5)

and
h−1‖Rh,1‖0,G1

<∼ ‖curl vh‖0,G1 . (5.6)

Notice that ph,1, wh,1 and Rh,1 may be not vanish on e since e ∩ Γ1 = ∅. We extend ph,1,
wh,1 and Rh,1 into G2 such that the resulting extensions p̃h,1 ∈ Zh(G), w̃h,1 ∈ (Zh(G))3

and R̃h,1 ∈ Vh(G) have zero degrees of freedom on the nodes or fine edges in G2\e. Define

v∗h = vh − (p̃h,1 + rhw̃h,1 + R̃h,1) on G. (5.7)

Then v∗h|G2 vanishes on Γ2 and e, and it admits the decomposition by Lemma 4.4

v∗h = p∗h,2 + rhw
∗
h,2 + R∗h,2 on G2, (5.8)

with p∗h,2 ∈ Zh(G2) and w∗h,2 ∈ (Zh(G2))3 vanishing on Γ2 and e. Moreover, we have

‖w∗h,2‖1,G2
<∼ ‖curl v∗h‖0,G2 , ‖p∗h,2‖1,G2

<∼ ‖v
∗
h‖curl,G2 (5.9)

and
h−1‖R∗h,2‖0,G2

<∼ ‖curl v∗h‖0,G2 . (5.10)

We extend p∗h,2, w∗h,2 and R∗h,2 into G1 by zero. Since these functions vanish on e, the

resulting extensions p̃∗h,2, w̃∗h,2 and R̃∗h,2 satisfy p̃∗h,2 ∈ Zh(G), w̃∗h,2 ∈ (Zh(G))3 and R̃∗h,2 ∈
Vh(G). Define

ph = p̃h,1 + p̃∗h,2, wh = w̃h,1 + w̃∗h,2 and Rh = R̃h,1 + R̃∗h,2.
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Then the decomposition (5.1) follows by (5.7) and (5.8).
In an analogous way with Step 2 in the proof of Theorem 3.1, we can verify the estimates

(5.2) and (5.3) by using (5.5)-(5.6) and (5.9)-(5.10), combining the “edge” lemma in [31]. ]
When Ḡ1 ∩ Ḡ2 is just the common vertex v of G1 and G2, it becomes more complicated

to study Helmholtz decomposition of vh on G = Ḡ1 ∪ Ḡ2. Let Γ be a union of some faces of
G1 and G2, and vh has zero tangential trace on Γ. We first consider a simple case: one of
the two sets Γi = Γ ∩ ∂Gi (i = 1, 2), for example Γ1, is just the empty set, i.e., Γ is a union
of some faces that are contained in ∂G2 and do not contain v. For this case, the results can
be built as in the case (iii) of the proof of Theorem 5.1: we first use Lemma 3.1 to define a
decomposition of vh|G2 , then we extend the resulting functions into G1, and we further use
Lemma 4.3 to define a decomposition of the remainder of vh on G1.

In the following, we consider the case with Γi 6= ∅ (i = 1, 2) and v /∈ Γ. For this case,
similar results with Theorem 5.1 can not be obtained except that some additional condition
on vh is met. Let f1 ⊂ ∂G1 and f2 ⊂ ∂G2 denote two faces containing v. As in the proof
of Lemma 4.3, we define

C∂fi
=

1

li

∫ li

0
(vh · t∂fi

)(s) ds, φ∂fi
(t) =

∫ t

0
(vh · t∂fi

− C∂fi
)(s)ds+ ci , ∀ t ∈ [0, li] ,

where li is the length of ∂fi and t = 0 (and t = li) corresponds the vertex v. For i = 1, 2,
the constant ci are chosen such that γei

(φ∂fi
) = 0, where ei ⊂ ∂fi is an edge or a union of

some edges.

Theorem 5.2 Let G be a union of G1 and G2, with Ḡ1 ∩ Ḡ2 being the common vertex v
of G1 and G2, and let Γ be a union of some faces of G1 and G2 such that v /∈ Γ. Assume
that the vector-valued function vh ∈ Vh(G) satisfies vh × n = 0 on Γ. If the following
additional condition is met: there are two faces fi (⊂ ∂Gi) (i = 1, 2) containing v such that

φ∂f1(t
(1)
v ) = φ∂f2(t

(2)
v ), where the function φ∂fi

is defined above and the number t
(i)
v is the

arc-length coordinate corresponding to the point v ∈ ∂fi, then vh has a decomposition

vh = ∇ph + rhwh + Rh (5.11)

for some ph ∈ Zh(G), wh ∈ (Zh(G))3 and Rh ∈ Vh(G) such that ph = 0, wh = 0 and
Rh × n = 0 on Γ. Moreover, we have

‖wh‖1,D <∼ log(1/h)‖curl vh‖0,G, ‖ph‖1,G <∼ log(1/h)‖vh‖0,G (5.12)

and
h−1‖Rh‖0,G <∼ log(1/h)‖curl vh‖0,G. (5.13)

Proof. Without loss of generality, we only consider the case with fi ∩Γ = ∅ (i = 1, 2). As in

the proof of Lemma 4.3, we define the extensions φ̃
(i)
v and C̃

(i)
v of φ∂fi

and C∂fi
respectively,

but define the values of φ̃
(i)
v as zero at all the nodes in Gi except on ∂fi. Set

v̂
(i)
h,v = vh|Gi − (φ̃

(i)
v + rhC̃

(i)
v ) on Gi.

Then we have λe(v̂
(i)
h,v) = 0 for any e ⊂ ∂fi ∪ (Γ ∩ ∂Gi) by the definitions of φ̃

(i)
v and

C̃
(i)
v . Thus we can use Corollary 4.1 for v̂

(i)
h,v to build a decomposition of vh|Gi and the

corresponding estimates by the condition γei
(φ∂fi

) = 0 (refer to the proof of Lemma 4.3).
Using the definitions of the functions ph,i and wh,i in the decomposition of vh|Gi , together

with the condition φ∂f1(t
(1)
v ) = φ∂f2(t

(2)
v ), yields ph,1 = ph,2 and wh,i = 0 at the vertex v.

Therefore, we can naturally define a decomposition of vh on the global G and obtain the
desired stability estimates. ]
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Remark 5.1 The condition φ∂f1(t
(1)
v ) = φ∂f2(t

(2)
v ) in the above theorem seems absolutely

necessary (a counterexample can be constructed as in Remark 4.3). But, when v ⊂ Γ∩ ∂Gi
for i = 1, 2, the additional condition in Theorem 5.2 is unnecessary and the logarithm factor
in (5.12)-(5.13) can be dropped. In fact, we can use Lemma 3.1 to build a decomposition of
vh|Gi independently for i = 1, 2, such that the resulting functions ph,i and wh,i vanish on
Γ ∩ ∂Gi that contains v. Thus we can directly extend ph,i and wh,i into another domain by
zero to get the global extension of vh on G and obtain the desired stability estimates.

We can also consider the case that G is a union of more polyhedrons. Let G1, G2, · · · , Gs
be Lipchitz polyhedrons that may be non-convex, and let G be a union of G1, G2, · · · , Gs
(then G is a non-Lipchitz domain) such that the intersection of any two polyhedrons in
G1, G2, · · · , Gs is just the same vertex of them, i.e., Ḡi ∩ Ḡj = v (a vertex) for i 6= j (of
course, Ḡ1 ∩ Ḡ2 ∩ · · · ∩ Ḡs = v).

Theorem 5.3 Let Gi (i = 1, · · · , s; s ≥ 3) and G be defined above, and let Γ denote a
union of some faces of G1, · · · , Gs. Assume that the vector-valued function vh ∈ Vh(G) has
the zero tangential trace vh×n = 0 on Γ. Then there exist s−1 functionals Fi such that, if
vh satisfies the constraints Fivh = 0 for i = 1, · · · , s−1, the function vh admits a Helmholtz
decomposition like (5.11) and the resulting functions satisfy the conditions and estimates in
Theorem 5.2.

Proof. Let fi be a face satisfying v ∈ fi ⊂ ∂Gi and define a function φ∂fi
as in Theorem

5.2 (i = 1, · · · , s). We define the functional Fi by

Fivh = φ∂fi+1
(v)− φ∂fi

(v) (i = 1, · · · , s− 1);

Then we can prove the desired results in an analogous way with the proof of Theorem 5.2.
]

Remark 5.2 The theorems given in this section still hold if there are some edges in Γ.
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